Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.142
Filter
1.
Arch Microbiol ; 206(5): 221, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637410

ABSTRACT

Bacterial flagellin is a potent immunomodulatory agent. Previously, we successfully obtained flagellin from Escherichia coli Nissle 1917 (FliCEcN) and constructed two mutants with varying degrees of deletion in its highly variable regions (HVRs). We found that there was a difference in immune stimulation levels between the two mutants, with the mutant lacking the D2-D3 domain pair of FliCEcN having a better adjuvant effect. Therefore, this study further analyzed the structural characteristics of the aforementioned FliCEcN and its two mutants and measured their levels of Caco-2 cell stimulation to explore the impact of different domains in the HVRs of FliCEcN on its structure and immune efficacy. This study utilized AlphaFold2, SERS (Surface-enhanced Raman spectroscopy), and CD (circular dichroism) techniques to analyze the structural characteristics of FliCEcN and its mutants, FliCΔ174-506 and FliCΔ274-406, and tested their immune effects by stimulating Caco-2 cells in vitro. The results indicate that the D2 and D3 domains of FliCEcN have more complex interactions compared to the D1-D2 domain pair., and these domains also play a role in molecular docking with TLR5 (Toll-like receptor 5). Furthermore, FliCΔ274-406 has more missing side chain and characteristic amino acid peaks than FliCΔ174-506. The FliCEcN group was found to stimulate higher levels of IL-10 (interleukin 10) secretion, while the FliCΔ174-506 and FliCΔ274-406 groups had higher levels of IL-6 (interleukin 6) and TNF-α (tumor necrosis factor-α) secretion. In summary, the deletion of different domains in the HVRs of FliCEcN affects its structural characteristics, its interaction with TLR5, and the secretion of immune factors by Caco-2 cells.


Subject(s)
Escherichia coli , Toll-Like Receptor 5 , Humans , Escherichia coli/metabolism , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/chemistry , Flagellin/genetics , Caco-2 Cells , Molecular Docking Simulation
2.
Cancer Immunol Immunother ; 73(6): 102, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630304

ABSTRACT

Immune checkpoint inhibitors have revolutionized anti-tumor therapy, notably improving treatment responses in various tumors. However, many patients remain non-responsive and do not experience benefits. Given that Toll-like receptors (TLRs) can counteract tumor immune tolerance by stimulating both innate and adaptive immune responses, TLR agonists are being explored as potential immune adjuvants for cancer treatment. In this study, we assessed the potential of enhancing the efficacy of immune checkpoint inhibitors by activating innate immunity with a TLR5 agonist. In a mouse tumor model, combination therapy with TLR5 agonist and anti-PD-1 significantly inhibited tumor growth. The TLR5 agonist shifted the balance from M2-like to M1-like macrophages and upregulated the expression of co-stimulatory molecules in macrophages. Furthermore, TLR5 agonist promoted the activation and tumor infiltration of CD8+ T cells. As a result, the TLR5 agonist augmented the anti-tumor efficacy of anti-PD-1, suggesting its potential in modulating the tumor microenvironment to enhance the anti-tumor response. Our findings point toward the possibility of optimizing immune checkpoint inhibitor therapy using TLR5 agonists.


Subject(s)
Neoplasms , Toll-Like Receptor 5 , Humans , Animals , Mice , CD8-Positive T-Lymphocytes , Immune Checkpoint Inhibitors , Macrophages , Combined Modality Therapy , Disease Models, Animal , Tumor Microenvironment
3.
Int Immunopharmacol ; 130: 111773, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38430808

ABSTRACT

As bacteria synthesize nutrients primarily in the cecum, coprophagy is indispensable for supplying rabbits with essential nutrients. Recent research has demonstrated its pivotal role in maintaining intestinal microbiota homeostasis and immune regulation in rabbits, although the specific mechanism remains unknown. Here, we used coprophagy prevention (CP) to investigate the effects of coprophagy on the cecum homeostasis and microbiota in New Zealand white rabbits. Furthermore, whether supplementation of Clostridium butyricum (C. butyricum) may alleviate the cecum inflammation and apoptosis caused by CP was also explored. Four groups were randomly assigned: control (Con), sham-coprophagy prevention (SCP), coprophagy prevention (CP), and CP and C. butyricum addition (CPCB). Compared to Con and SCP, CP augmented cecum inflammation and apoptosis, as well as bacterial adhesion to the cecal epithelial mucosa, while decreasing the expression of tight junction proteins (ZO-1, occluding, and claudin-1). The relative abundance of short-chain fatty acids (SCFAs)-producing bacteria was significantly decreased in the CP group. Inversely, there was an increase in the Firmicutes/Bacteroidetes ratio and the relative abundance of Christensenellaceae_R-7_group. Additionally, CP increased the levels of Flagellin, IFN-γ, TNF-a, and IL-1ß in cecum contents and promoted the expression of TLR5/MyD88/NF-κB pathway in cecum tissues. However, the CPCB group showed significant improvements in all parameters compared to the CP group. Dietary C. butyricum supplementation significantly increased the production of SCFAs, particularly butyric acid, triggering anti-inflammatory, tissue repairing, and barrier-protective responses. Notably, CPCB effectively mitigated CP-induced apoptosis and inflammation. In summary, CP disrupts the cecum epithelial barrier and induces inflammation in New Zealand white rabbits, but these effects can be alleviated by C. butyricum supplementation. This process appears to be largely associated with the TLR5/MyD88/NF-κB signaling pathway.


Subject(s)
Clostridium butyricum , Probiotics , Rabbits , Animals , Clostridium butyricum/physiology , NF-kappa B/metabolism , Coprophagia , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 5/metabolism , Fatty Acids, Volatile , Inflammation
4.
Front Immunol ; 15: 1333967, 2024.
Article in English | MEDLINE | ID: mdl-38482010

ABSTRACT

Introduction: The incidence of the autoimmune disease, type 1 diabetes (T1D), has been increasing worldwide and recent studies have shown that the gut microbiota are associated with modulating susceptibility to T1D. Toll-like receptor 5 (TLR5) recognizes bacterial flagellin and is widely expressed on many cells, including dendritic cells (DCs), which are potent antigen-presenting cells (APCs). TLR5 modulates susceptibility to obesity and alters metabolism through gut microbiota; however, little is known about the role TLR5 plays in autoimmunity, especially in T1D. Methods: To fill this knowledge gap, we generated a TLR5-deficient non-obese diabetic (NOD) mouse, an animal model of human T1D, for study. Results: We found that TLR5-deficiency led to a reduction in CD11c+ DC development in utero, prior to microbial colonization, which was maintained into adulthood. This was associated with a bias in the DC populations expressing CD103, with or without CD8α co-expression, and hyper-secretion of different cytokines, both in vitro (after stimulation) and directly ex vivo. We also found that TLR5-deficient DCs were able to promote polyclonal and islet antigen-specific CD4+ T cell proliferation and proinflammatory cytokine secretion. Interestingly, only older TLR5-deficient NOD mice had a greater risk of developing spontaneous T1D compared to wild-type mice. Discussion: In summary, our data show that TLR5 modulates DC development and enhances cytokine secretion and diabetogenic CD4+ T cell responses. Further investigation into the role of TLR5 in DC development and autoimmune diabetes may give additional insights into the pathogenesis of Type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Animals , Humans , Mice , Cytokines/metabolism , Dendritic Cells , Disease Susceptibility/metabolism , Mice, Inbred NOD , Toll-Like Receptor 5/metabolism
5.
Antimicrob Agents Chemother ; 68(5): e0136123, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38526073

ABSTRACT

The increasing prevalence of multidrug-resistant Pseudomonas aeruginosa (PA) is a significant concern for chronic respiratory disease exacerbations. Host-directed drugs, such as flagellin, an agonist of toll-like receptor 5 (TLR5), have emerged as a promising solution. In this study, we evaluated the prophylactic intranasal administration of flagellin against a multidrug-resistant strain of PA (PAMDR) in mice and assessed the possible synergy with the antibiotic gentamicin (GNT). The results indicated that flagellin treatment before infection decreased bacterial load in the lungs, likely due to an increase in neutrophil recruitment, and reduced signs of inflammation, including proinflammatory cytokines. The combination of flagellin and GNT showed a synergistic effect, decreasing even more the bacterial load and increasing mice survival rates, in comparison to mice pre-treated only with flagellin. These findings suggest that preventive nasal administration of flagellin could restore the effect of GNT against MDR strains of PA, paving the way for the use of flagellin in vulnerable patients with chronic respiratory diseases.


Subject(s)
Administration, Intranasal , Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Flagellin , Gentamicins , Pseudomonas Infections , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Gentamicins/pharmacology , Animals , Flagellin/pharmacology , Mice , Drug Resistance, Multiple, Bacterial/drug effects , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Anti-Bacterial Agents/pharmacology , Female , Lung/microbiology , Lung/drug effects , Microbial Sensitivity Tests , Toll-Like Receptor 5/agonists , Bacterial Load/drug effects , Drug Synergism
6.
Am J Trop Med Hyg ; 110(5): 994-998, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38507807

ABSTRACT

Melioidosis, infection caused by Burkholderia pseudomallei, is characterized by robust innate immune responses. We have previously reported associations of TLR1 single nucleotide missense variant rs76600635 with mortality and of TLR5 nonsense variant rs5744168 with both bacteremia and mortality in single-center studies of patients with melioidosis in northeastern Thailand. The objective of this study was to externally validate the associations of rs76600635 and rs5744168 with bacteremia and mortality in a large multicenter cohort of melioidosis patients. We genotyped rs76600635 and rs5744168 in 1,338 melioidosis patients enrolled in a prospective parent cohort study conducted at nine hospitals in northeastern Thailand. The genotype frequencies of rs76600635 did not differ by bacteremia status (P = 0.27) or 28-day mortality (P = 0.84). The genotype frequencies of rs5744168 did not differ by either bacteremia status (P = 0.46) or 28-day mortality (P = 0.10). Assuming a dominant genetic model, there was no association of the rs76600635 variant with bacteremia (adjusted odds ratio [OR], 0.75; 95% CI, 0.54-1.04, P = 0.08) or 28-day mortality (adjusted OR, 0.96; 95% CI, 0.71-1.28, P = 0.77). There was no association of the rs5744168 variant with bacteremia (adjusted OR, 1.24; 95% CI, 0.76-2.03, P = 0.39) or 28-day mortality (adjusted OR, 1.22; 95% CI, 0.83-1.79, P = 0.21). There was also no association of either variant with 1-year mortality. We conclude that in a large multicenter cohort of patients hospitalized with melioidosis in northeastern Thailand, neither TLR1 missense variant rs76600635 nor TLR5 nonsense variant rs5744168 is associated with bacteremia or mortality.


Subject(s)
Bacteremia , Melioidosis , Toll-Like Receptor 1 , Toll-Like Receptor 5 , Humans , Melioidosis/mortality , Melioidosis/genetics , Melioidosis/microbiology , Male , Female , Toll-Like Receptor 1/genetics , Thailand/epidemiology , Middle Aged , Bacteremia/mortality , Bacteremia/microbiology , Bacteremia/genetics , Toll-Like Receptor 5/genetics , Adult , Cohort Studies , Polymorphism, Single Nucleotide , Genotype , Burkholderia pseudomallei/genetics , Prospective Studies , Aged , Genetic Predisposition to Disease
7.
Immunity ; 57(4): 859-875.e11, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38513665

ABSTRACT

At mucosal surfaces, epithelial cells provide a structural barrier and an immune defense system. However, dysregulated epithelial responses can contribute to disease states. Here, we demonstrated that epithelial cell-intrinsic production of interleukin-23 (IL-23) triggers an inflammatory loop in the prevalent oral disease periodontitis. Epithelial IL-23 expression localized to areas proximal to the disease-associated microbiome and was evident in experimental models and patients with common and genetic forms of disease. Mechanistically, flagellated microbial species of the periodontitis microbiome triggered epithelial IL-23 induction in a TLR5 receptor-dependent manner. Therefore, unlike other Th17-driven diseases, non-hematopoietic-cell-derived IL-23 served as an initiator of pathogenic inflammation in periodontitis. Beyond periodontitis, analysis of publicly available datasets revealed the expression of epithelial IL-23 in settings of infection, malignancy, and autoimmunity, suggesting a broader role for epithelial-intrinsic IL-23 in human disease. Collectively, this work highlights an important role for the barrier epithelium in the induction of IL-23-mediated inflammation.


Subject(s)
Interleukin-23 , Periodontitis , Humans , Epithelial Cells , Inflammation , Toll-Like Receptor 5/metabolism
8.
Front Immunol ; 15: 1359534, 2024.
Article in English | MEDLINE | ID: mdl-38352866

ABSTRACT

Introduction: Leaky gut has been linked to autoimmune disorders including lupus. We previously reported upregulation of anti-flagellin antibodies in the blood of lupus patients and lupus-prone mice, which led to our hypothesis that a leaky gut drives lupus through bacterial flagellin-mediated activation of toll-like receptor 5 (TLR5). Methods: We created MRL/lpr mice with global Tlr5 deletion through CRISPR/Cas9 and investigated lupus-like disease in these mice. Result: Contrary to our hypothesis that the deletion of Tlr5 would attenuate lupus, our results showed exacerbation of lupus with Tlr5 deficiency in female MRL/lpr mice. Remarkably higher levels of proteinuria were observed in Tlr5 -/- MRL/lpr mice suggesting aggravated glomerulonephritis. Histopathological analysis confirmed this result, and Tlr5 deletion significantly increased the deposition of IgG and complement C3 in the glomeruli. In addition, Tlr5 deficiency significantly increased renal infiltration of Th17 and activated cDC1 cells. Splenomegaly and lymphadenopathy were also aggravated in Tlr5-/- MRL/lpr mice suggesting impact on lymphoproliferation. In the spleen, significant decreased frequencies of regulatory lymphocytes and increased germinal centers were observed with Tlr5 deletion. Notably, Tlr5 deficiency did not change host metabolism or the existing leaky gut; however, it significantly reshaped the fecal microbiota. Conclusion: Global deletion of Tlr5 exacerbates lupus-like disease in MRL/lpr mice. Future studies will elucidate the underlying mechanisms by which Tlr5 deficiency modulates host-microbiota interactions to exacerbate lupus.


Subject(s)
Glomerulonephritis , Toll-Like Receptor 5 , Animals , Female , Humans , Mice , Glomerulonephritis/pathology , Kidney/pathology , Mice, Inbred MRL lpr , Proteinuria
9.
Cell Death Dis ; 15(2): 120, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38331868

ABSTRACT

Targeting C5aR1 modulates the function of infiltrated immune cells including tumor-associated macrophages (TAMs). The gut microbiome plays a pivotal role in colorectal cancer (CRC) tumorigenesis and development through TAM education. However, whether and how the gut flora is involved in C5aR1 inhibition-mediated TAMs remains unclear. Therefore, in this study, genetic deletion of C5ar1 or pharmacological inhibition of C5aR1 with anti-C5aR1 Ab or PMX-53 in the presence or absence of deletion Abs were utilized to verify if and how C5aR1 inhibition regulated TAMs polarization via affecting gut microbiota composition. We found that the therapeutic effects of C5aR1 inhibition on CRC benefited from programming of TAMs toward M1 polarization via driving AKT2-mediated 6-phosphofructokinase muscle type (PFKM) stabilization in a TLR5-dependent manner. Of note, in the further study, we found that C5aR1 inhibition elevated the concentration of serum IL-22 and the mRNA levels of its downstream target genes encoded antimicrobial peptides (AMPs), leading to gut microbiota modulation and flagellin releasement, which contributed to M1 polarization. Our data revealed that high levels of C5aR1 in TAMs predicted poor prognosis. In summary, our study suggested that C5aR1 inhibition reduced CRC growth via resetting M1 by AKT2 activation-mediated PFKM stabilization in a TLR5-dependent manner, which relied on IL-22-regulated gut flora.


Subject(s)
Gastrointestinal Microbiome , Macrophages , Toll-Like Receptor 5/genetics , Phosphofructokinases , Phosphofructokinase-1 , Muscles , Tumor Microenvironment
10.
Dis Colon Rectum ; 67(5): 681-692, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38319717

ABSTRACT

BACKGROUND: Recent studies showed that early surgery for Crohn's disease leads to a lower recurrence rate. However, the underlying mechanism is unknown. OBJECTIVE: The study aims to analyze the innate immunity microenvironment in ileal mucosa according to the duration of Crohn's disease. DESIGN: A prospective cohort study. SETTINGS: Tertiary referral center for IBD surgery. PATIENTS: A total of 88 consecutive patients with Crohn's disease undergoing ileocolonic resection were prospectively enrolled. Mucosal samples were obtained from both healthy and inflamed ileum. Data from a public data set were analyzed as an external validation cohort. MAIN OUTCOME MEASURES: Neutrophil infiltration was evaluated by histological asessment and macrophage subpopulation was assessed by immunohistochemistry. Expressions of TLR2 , TLR4 , TLR5 , DEFB1 , DEFB4A , DEFB103 , DEFA5 , and DEFA6 were quantified by real-time quantitative polymerase chain reaction. Concentrations of BDNF, CCL-11, ICAM-1, IL-1A, IL-1ß, IL-1RN, IL-12p40, IL-12p70, IL-15, IL-17A, IL-23A, MMP-3, CCL-3, KITLG, and VEGFA were determined with an immunometric assay. RESULTS: Neutrophil infiltration is inversely correlated with disease duration. DEFB4A mRNA expression tended to be higher in late-stage Crohn's disease ( p = 0.07). A higher number of macrophages expressed CD163 at low intensity in late-stage Crohn's disease ( p = 0.04). The concentration of IL-15 ( p = 0.02) and IL-23A ( p = 0.05) was higher in healthy ileal mucosa of early-stage patients. In the external cohort, expressions of DEFB1 ( p = 0.03), DEFB4A ( p = 0.01), IL-2 ( p = 0.04), and IL-3 ( p = 0.03) increased in patients with late-stage Crohn's disease. LIMITATIONS: A relatively small number of patients, especially in the newly diagnosed group. CONCLUSIONS: In newly diagnosed Crohn's disease, high levels of IL-15 and IL-23 in healthy mucosa suggest that innate immunity is the starter of acute inflammation. Moreover, M2 macrophages increase in the healthy mucosa of patients with late-stage Crohn's disease, suggesting that reparative and profibrotic processes are predominant in the long term, and in this phase, anti-inflammatory therapy may be less efficient. See Video Abstract . ACTIVACIN DE LA INMUNIDAD INNATA EN LA RECIENTEMENTE DIAGNOSTICADA ENFERMEDAD DE CROHN ILEOCLICA UN ESTUDIO DE COHORTE: ANTECEDENTES:Estudios recientes demostraron que la cirugía temprana para la enfermedad de Crohn (EC) conduce a una menor tasa de recurrencia. Sin embargo, se desconoce el mecanismo subyacente.OBJETIVO:El estudio tiene como objetivo analizar el microambiente de la inmunidad innata en la mucosa ileal según la duración de la EC.DISEÑO:Un estudio de cohorte prospectivo.AJUSTES:Centro terciario de referencia para cirugía de EII.PACIENTES:Fueron registrados de manera prospectiva y consecutiva 88 pacientes con EC sometidos a resección ileocolónica. Se obtuvieron muestras de mucosa ileal, tanto del íleon sano como del íleon inflamado. Los datos se analizaron como una cohorte de validación externa.PRINCIPALES MEDIDAS DE RESULTADO:Fueron evaluados la infiltración de neutrófilos por histología y la subpoblación de macrófagos por inmunohistoquímica. La expresión de TLR2, TLR4, TLR5, DEFB1, DEFB4A, DEFB103, DEFA5 y DEFA6 fueron cuantificados mediante qPCR en tiempo real. Las concentraciones de BDNF, CCL-11, ICAM-1, IL-1A, IL-1B, IL-1RN, IL-12 p40, IL-12 p70, IL-15, IL-17A, IL-23A, MMP-3, CCL-3, KITLG, VEGFA se determinaron con ensayo inmunométrico.RESULTADOS:La infiltración de neutrófilos se correlaciona inversamente con la duración de la enfermedad. La expresión del ARNm de DEFB4A mostro una tendencia a ser mayor en la EC en etapa tardía ( p = 0,07). Un mayor número de macrófagos expresaron CD163 a baja intensidad en la etapa tardía ( p = 0,04). La concentración de IL15 ( p = 0,02) e IL23A ( p = 0,05) fue mayor en la mucosa ileal sana de pacientes en estadio temprano. En la cohorte externa, la expresión de DEFB1 ( p = 0,03) y DEFB4A ( p = 0,01), IL2 ( p = 0,04) e IL3 ( p = 0,03) aumentó en pacientes en etapa tardía.LIMITACIONES:Un número relativamente pequeño de pacientes, especialmente en el grupo recién diagnosticado.CONCLUSIONES:En la EC recién diagnosticada, los altos niveles de IL-15 e IL-23 en la mucosa sana sugieren que la inmunidad innata es el promotor de la inflamación aguda. Además, los macrófagos M2 aumentan en la mucosa sana de pacientes con EC en etapa tardía, lo que sugiere que los procesos reparadores y profibróticos son predominantes a largo plazo y en esta fase, la terapia antiinflamatoria puede ser menos eficiente. (Traducción-Dr. Osvaldo Gauto ).


Subject(s)
Crohn Disease , Intercellular Adhesion Molecule-1 , beta-Defensins , Humans , Cohort Studies , Interleukin-15 , Interleukin-17 , Matrix Metalloproteinase 3 , Brain-Derived Neurotrophic Factor , Crohn Disease/surgery , Prospective Studies , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Toll-Like Receptor 5 , Immunity, Innate , Interleukin-12 , Interleukin-23 , Retrospective Studies
11.
Nat Commun ; 15(1): 46, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167804

ABSTRACT

Addressing age-related immunological defects through therapeutic interventions is essential for healthy aging, as the immune system plays a crucial role in controlling infections, malignancies, and in supporting tissue homeostasis and repair. In our study, we show that stimulating toll-like receptor 5 (TLR5) via mucosal delivery of a flagellin-containing fusion protein effectively extends the lifespan and enhances the healthspan of mice of both sexes. This enhancement in healthspan is evidenced by diminished hair loss and ocular lens opacity, increased bone mineral density, improved stem cell activity, delayed thymic involution, heightened cognitive capacity, and the prevention of pulmonary lung fibrosis. Additionally, this fusion protein boosts intestinal mucosal integrity by augmenting the surface expression of TLR5 in a certain subset of dendritic cells and increasing interleukin-22 (IL-22) secretion. In this work, we present observations that underscore the benefits of TLR5-dependent stimulation in the mucosal compartment, suggesting a viable strategy for enhancing longevity and healthspan.


Subject(s)
Longevity , Toll-Like Receptor 5 , Animals , Mice , Flagellin/metabolism , Intestinal Mucosa/metabolism , Longevity/genetics , Lung/metabolism
12.
PeerJ ; 12: e16716, 2024.
Article in English | MEDLINE | ID: mdl-38188180

ABSTRACT

Objective: The objective is to explore whether the flagellin-TLR5 complex signal can enhance the antigen presentation ability of myeloid DCs through the TRIF-ERK1/2 pathway, and the correlation between this pathway and intestinal mucosal inflammation response. Methods: Mouse bone marrow-derived DC line DC2.4 was divided into four groups: control group (BC) was DC2.4 cells cultured normally; flagellin single signal stimulation group (DC2.4+CBLB502) was DC2.4 cells stimulated with flagellin derivative CBLB502 during culture; TLR5-flagellin complex signal stimulation group (ov-TLR5-DC2.4+CBLB502) was flagellin derivative CBLB502 stimulated ov-TLR5-DC2.4 cells with TLR5 gene overexpression; TRIF signal interference group (ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA) was ov-TLR5-DC2.4 cells with TLR5 gene overexpression stimulated with flagellin derivative CBLB502 and intervened with TRIF-specific inhibitor Pepinh-TRIFTFA. WB was used to detect the expression of TRIF and p-ERK1/2 proteins in each group of cells; CCK8 was used to detect cell proliferation in each group; flow cytometry was used to detect the expression of surface molecules MHCI, MHCII, CD80, 86 in each group of cells; ELISA was used to detect the levels of IL-12 and IL-4 cytokines in each group. Results: Compared with the BC group, DC2.4+CBLB502 group, and ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA group, the expression of TRIF protein and p-ERK1/2 protein in ov-TLR5-DC2.4+CBLB502 group was significantly upregulated (TRIF: p = 0.02,  = 0.007,  = 0.048) (ERK1: p < 0.001, =0.0003,  = 0.0004; ERK2:p = 0.0003,  = 0.0012,  = 0.0022). The cell proliferation activity in ov-TLR5-DC2.4+CBLB502 group was enhanced compared with the other groups (p = 0.0001, p < 0.0001, p = 0.0015); at the same time, the expression of surface molecules MHCI, MHCII, CD80, 86 on DCs was upregulated (p < 0.05); and the secretion of IL-12 and IL-4 cytokines was increased, with significant differences (IL-12: p < 0.0001, p < 0.0001, p = 0.0005; IL-4: p =  < 0.0001, p =  < 0.0001, p = 0.0001). However, the ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA group, which was treated with TRIF signal interference, showed a decrease in intracellular TRIF protein and p-ERK1/2 protein, as well as a decrease in cell proliferation ability and surface stimulation molecules, and a decrease in the secretion of IL-12 and IL-4 cytokines (p < 0.05). Conclusion: After stimulation of flagellin protein-TLR5 complex signal, TRIF protein and p-ERK1/2 protein expression in myeloid dendritic cells were significantly up-regulated, accompanied by increased proliferation activity and maturity of DCs, enhanced antigen presentation function, increased secretion of pro-inflammatory cytokines IL-12 and IL-4. This process can be inhibited by the specific inhibitor of TRIF signal, suggesting that the TLR5-TRIF-ERK1/2 pathway may play an important role in abnormal immune response and mucosal chronic inflammation infiltration mediated by flagellin protein in DCs, which can provide a basis for our subsequent animal experiments.


Subject(s)
Flagellin , MAP Kinase Signaling System , Animals , Mice , Adaptor Proteins, Vesicular Transport/genetics , Antigen Presentation , B7-1 Antigen , Cell Proliferation , Cytokines , Flagellin/pharmacology , Glycine Dehydrogenase (Decarboxylating) , Interleukin-12 , Interleukin-4 , Intestinal Mucosa , Signal Transduction , Toll-Like Receptor 5/genetics
13.
Microbiome ; 12(1): 4, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172943

ABSTRACT

BACKGROUND: The overgrowth of Desulfovibrio, an inflammation promoting flagellated bacteria, has been found in ulcerative colitis (UC) patients. However, the molecular mechanism in promoting colitis remains unestablished. METHODS: The relative abundance Desulfovibrio vulgaris (D. vulgaris) in stool samples of UC patients was detected. Mice were treated with dextran sulfate sodium to induce colitis with or without administration of D. vulgaris or D. vulgaris flagellin (DVF), and the severity of colitis and the leucine-rich repeat containing 19 (LRRC19) signaling were assessed. The interaction between DVF and LRRC19 was identified by surface plasmon resonance and intestinal organoid culture. Lrrc19-/- and Tlr5-/- mice were used to investigate the indispensable role of LRRC19. Finally, the blockade of DVF-LRRC19 interaction was selected through virtual screening and the efficacy in colitis was assessed. RESULTS: D. vulgaris was enriched in fecal samples of UC patients and was correlated with the disease severity. D. vulgaris or DVF treatment significantly exacerbated colitis in germ-free mice and conventional mice. Mechanistically, DVF could interact with LRRC19 (rather than TLR5) in colitis mice and organoids, and then induce the production of pro-inflammatory cytokines. Lrrc19 knockdown blunted the severity of colitis. Furthermore, typhaneoside, a blockade of binding interfaces, blocked DVF-LRRC19 interaction and dramatically ameliorated DVF-induced colitis. CONCLUSIONS: D. vulgaris could promote colitis through DVF-LRRC19 interaction. Targeting DVF-LRRC19 interaction might be a new therapeutic strategy for UC therapy. Video Abstract.


Subject(s)
Colitis, Ulcerative , Colitis , Desulfovibrio vulgaris , Humans , Mice , Animals , Toll-Like Receptor 5/metabolism , Toll-Like Receptor 5/therapeutic use , Desulfovibrio vulgaris/metabolism , Colitis/chemically induced , Colitis/metabolism , Colitis, Ulcerative/microbiology , Inflammation/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Mice, Inbred C57BL , Colon/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/therapeutic use
14.
Vet Microbiol ; 289: 109960, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176089

ABSTRACT

Lawsonia intracellularis, a Gram-negative obligate intracellular bacterium and etiologic agent of porcine proliferative enteropathy, was observed to have a long, single, and unipolar flagellum. Bacterial flagellar filament comprises thousands of copies of the protein flagellin (FliC), and has been reported to be recognized by Toll-like receptor (TLR5) to activate the NF-κB and MAPK signaling pathways, thereby inducing the expression of proinflammatory genes. Recently, two L. intracellularis flagellin proteins, LfliC and LFliC, were reported to be involved in bacterial-host interaction and immune response. Here, to further explore the role of LfliC in proinflammatory response, we purified LfliC, and found that its exposure could activate NF-κB signaling pathway in both HEK293T and IPI-FX cells, as well as activate MAPK p38 and ERK1/2 in HEK293T cells but not in IPI-FX cells. However, our yeast two-hybrid and co-immunoprecipitation assay results revealed that LfliC has no interaction with the porcine TLR5 ECD domain though it harbors the conserved D1-like motif required for the interaction. Moreover, LfliC was identified as a substrate of the virulence-associated type III secretion system (T3SS) by using the heterologous Y. enterocolitica system. Transient expression of LfliC also activated the NF-κB and MAPK signaling pathway in HEK293T cells. Collectively, our results suggest that both the exposure and expression of L. intracellularis LfliC can induce the NF-κB and MAPK signaling pathway in mammalian cells. Our findings may provide important implications and resources for the development of diagnostic tools or vaccines and dissection of the pathogenesis of L. intracellularis.


Subject(s)
Flagellin , Lawsonia Bacteria , Humans , Animals , Swine , Flagellin/genetics , NF-kappa B/metabolism , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/metabolism , MAP Kinase Signaling System , Lawsonia Bacteria/metabolism , HEK293 Cells , Signal Transduction , Toll-Like Receptors/metabolism , Mammals
15.
Arthritis Res Ther ; 26(1): 1, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167328

ABSTRACT

BACKGROUND: The biological mechanisms underlying the differential response to abatacept in patients with rheumatoid arthritis (RA) are unknown. Here, we aimed to identify cellular, transcriptomic, and proteomic features that predict resistance to abatacept in patients with RA. METHODS: Blood samples were collected from 22 RA patients treated with abatacept at baseline and after 3 months of treatment. Response to treatment was defined by the European League Against Rheumatism (EULAR) response criteria at 3 months, and seven patients were classified as responders and the others as non-responders. We quantified gene expression levels by RNA sequencing, 67 plasma protein levels, and the expression of surface molecules (CD3, 19, and 56) by flow cytometry. In addition, three gene expression data sets, comprising a total of 27 responders and 50 non-responders, were used to replicate the results. RESULTS: Among the clinical characteristics, the number of monocytes was significantly higher in the non-responders before treatment. Cell type enrichment analysis showed that differentially expressed genes (DEGs) between responders and non-responders were enriched in monocytes. Gene set enrichment analysis, together with single-cell analysis and deconvolution analysis, identified that Toll-like receptor 5 (TLR5) and interleukin-17 receptor A (IL17RA) pathway in monocytes was upregulated in non-responders. Hepatocyte growth factor (HGF) correlated with this signature showed higher concentrations in non-responders before treatment. The DEGs in the replication set were also enriched for the genes expressed in monocytes, not for the TLR5 and IL17RA pathway but for the oxidative phosphorylation (OXPHOS) pathway. CONCLUSIONS: Monocyte-derived transcriptomic features before treatment underlie the differences in abatacept efficacy in patients with RA. The pathway activated in monocytes was the TLR5 and IL17RA-HGF signature in the current study, while it was the OXPHOS pathway in the replication set. Elevated levels of HGF before treatment may serve as a potential biomarker for predicting poor responses to abatacept. These findings provide insights into the biological mechanisms of abatacept resistance, contributing valuable evidence for stratifying patients with RA.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Humans , Abatacept/therapeutic use , Monocytes , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/therapeutic use , Antirheumatic Agents/therapeutic use , Transcriptome , Proteomics , Treatment Outcome , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics
16.
Int J Biol Macromol ; 259(Pt 2): 129395, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218285

ABSTRACT

Vibrio parahaemolyticus causes diseases in aquatic organisms, leading to substantial financial losses to the aquaculture industry; its flagellin F (flaF) protein triggers severe inflammation in host cells. To enhance the understanding of the function of flaF in V. parahaemolyticus infection, in this study, a flaF-deficient mutant was constructed by employing two-step homologous recombination. The flaF-deficient mutant induced a significantly lower toll-like receptor 5 (TLR5) expression and apoptosis in fish intestinal epithelial cells than the wild-type V. parahaemolyticus. Furthermore, fluorescence labelling and microscopy analysis of TLR5 showed that V. parahaemolyticus and its mutant strain significantly enhanced TLR5 expression. Additionally, the findings suggest that flaF deletion did not significantly affect the expression of myeloid differentiation factor 88 (MyD88) and interleukin-8 (IL-8) induced by V.parahaemolyticus. In summary, V. parahaemolyticus induced a TLR5-dependent inflammatory response and apoptosis through MyD88, which was observed to be influenced by flaF deletion. In this study, we obtained stable mutants of V. parahaemolyticus via target gene deletion-which is a rapid and effective approach-and compared the induction of inflammatory response and apoptosis by V. parahaemolyticus and its mutant strain, providing novel perspectives for functional gene research in V. parahaemolyticus.


Subject(s)
Perciformes , Vibrio parahaemolyticus , Animals , Vibrio parahaemolyticus/genetics , Flagellin/genetics , Flagellin/pharmacology , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Perciformes/genetics
17.
J Immunol ; 212(5): 855-867, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38231121

ABSTRACT

In mammals, TLR5 functions as a homodimer to recognize bacterial flagellin on the cytomembrane. The current investigations reveal the existence of two types of TLR5, a membrane-bound PmTLR5M, and a soluble variant PmTLR5S, in lamprey (Petromyzon marinus). Although both PmTLR5M and PmTLR5S can bind flagellin, only PmTLR5M is capable of eliciting a proinflammatory response, whereas PmTLR5S can detect the flagellin and facilitate the role of PmTLR5M in early endosomes. The trafficking chaperone UNC93B1 enhances the ligand-induced signaling via PmTLR5M or the combination of PmTLR5M and PmTLR5S. PmTLR5M recruits MyD88 as an adaptor. Furthermore, chimeric receptor studies demonstrate the indispensability of the intradomain of PmTLR5M in effective activation of the proinflammatory pathway upon flagellin stimulation, and the combination of PmTLR5S with a singular intradomain in both homodimer and heterodimer ectodomain arrangements can very significantly augment the immune response. Furthermore, the flagellin binding sites between PmTLR5M and PmTLR5S are conserved, which are essential for ligand binding and signal transduction. Moreover, investigations on N-linked glycosylation modifications reveal that the N239 site in PmTLR5M and PmTLR5S plays a switch role in both flagellin binding and immune responses. In addition, PmTLR5M exhibits the high-mannose-type and complex-type N-glycosylation modifications; however, PmTLR5S shows exclusive complex-type N-glycosylation modification. The key N239 site demonstrates complex-type N-glycosylation modification. The findings address the function and mechanism of TLR5 in ligand recognition, subcellular localization, and signaling pathway in lowest vertebrate and immune system transition species, highlight the regulatory role of N-glycosylation modification in TLRs, and augment immune evolutionary research on the TLR signaling pathway.


Subject(s)
Petromyzon , Animals , Flagellin , Glycosylation , Toll-Like Receptor 5 , Ligands , Endosomes/metabolism , Mammals/metabolism
18.
Fish Shellfish Immunol ; 146: 109373, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272332

ABSTRACT

Toll-like receptor 5 (TLR5) responds to the monomeric form of flagellin and induces the MyD88-depending signaling pathway, activating proinflammatory transcription factors such as NF-κB and the consequent induction of cytokines. On the other hand, HMGB1 is a highly conserved non-histone chromosomal protein shown to interact with and activate TLR5. The present work aimed to design and characterize TLR5 agonist peptides derived from the acidic tail of Salmo salar HMGB1 based on the structural knowledge of the TLR5 surface using global molecular docking platforms. Peptide binding poses complexed on TLR5 ectodomain model from each algorithm were filtrated based on docking scoring functions and predicted theoretical binding affinity of the complex. Circular dichroism spectra were recorded for each peptide selected for synthesis. Only intrinsically disordered peptides (6W, 11W, and SsOri) were selected for experimental functional assay. The functional characterization of the peptides was performed by NF-κB activation assays, RT-qPCR gene expression assays, and Piscirickettsia salmonis challenge in SHK-1 cells. The 6W and 11W peptides increased the nuclear translation of p65 and phosphorylation. In addition, the peptides induced the expression of genes related to the TLR5 pathway activation, pro- and anti-inflammatory response, and differentiation and activation of T lymphocytes towards phenotypes such as TH1, TH17, and TH2. Finally, it was shown that the 11W peptide protects immune cells against infection with P. salmonis bacteria. Overall, the results indicate the usefulness of novel peptides as potential immunostimulants in salmonids.


Subject(s)
HMGB1 Protein , Salmo salar , Animals , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Salmo salar/genetics , Salmo salar/metabolism , Molecular Docking Simulation , Peptides/pharmacology , Flagellin/pharmacology
19.
Fish Shellfish Immunol ; 144: 109219, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952850

ABSTRACT

Based on the structural knowledge of TLR5 surface and using blind docking platforms, peptides derived from a truncated HMGB1 acidic tail from Salmo salar was designed as TLR5 agonistic. Additionally, a template peptide with the native N-terminal of the acidic tail sequence as a reference was included (SsOri). Peptide binding poses complexed on TLR5 ectodomain model from each algorithm were filtrated based on docking scoring functions and predicted theoretical binding affinity of the complex. The best peptides, termed 6WK and 5LWK, were selected for chemical synthesis and experimental functional assay. The agonist activity by immunoblotting and immunocytochemistry was determined following the NF-κBp65 phosphorylation (p-NF-κBp65) and the nuclear translocation of the NF-κBp65 subunit from the cytosol, respectively. HeLa cells stably expressing a S. salar TLR5 chimeric form (TLR5c7) showed increased p-NF-κBp65 levels regarding extracts from flagellin-treated cells. No statistically significant differences (p > 0.05) were found in the detected p-NF-κBp65 levels between cellular extracts treated with peptides or flagellin by one-way ANOVA. The image analysis of NF-κBp65 immunolabeled cells obtained by confocal microscopy showed increased nuclear NF-κBp65 co-localization in cells both 5LWK and flagellin stimulated, while 6WK and SsOri showed less effect on p65 nuclear translocation (p < 0.05). Also, an increased transcript expression profile of proinflammatory cytokines such as TNFα, IL-1ß, and IL-8 in HKL cells isolated from Salmo salar was evidenced in 5LWK - stimulated by RT-PCR analysis. Overall, the result indicates the usefulness of novel peptides as a potential immunostimulant in S. salar.


Subject(s)
HMGB1 Protein , Salmo salar , Animals , Humans , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/metabolism , Flagellin/pharmacology , Flagellin/metabolism , Salmo salar/genetics , Salmo salar/metabolism , HeLa Cells , NF-kappa B/metabolism , Tail , Cytokines/genetics , Cytokines/metabolism
20.
Int J Biol Macromol ; 258(Pt 1): 128729, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086430

ABSTRACT

Toll-like receptor 5 (TLR5), serving as a sensor of bacterial flagellin, mediates the innate immune response to actively engage in the host's immune processes against pathogen invasion. However, the mechanism underlying TLR5-mediated immune response in fish remains unclear. Despite the presumed cell surface expression of TLR5 member form (TLR5M), its trafficking dynamics remain elusive. Here, we have identified Epinephelus coioides TLR5M as a crucial mediator of Vibrio flagellin-induced cytokine expression in grouper cells. EcTLR5M facilitated the activation of NF-κB signaling pathway in response to flagellin stimulation and exerted a modest influence on the mitogen-activated protein kinase (MAPK)-extracellular regulated kinase (ERK) signaling. The trafficking chaperone Unc-93 homolog B1 (EcUNC93B1) participated in EcTLR5M-mediated NF-κB signaling activation and downstream cytokine expression. In addition, EcUNC93B1 combined with EcTLR5M to mediate its exit from the endoplasmic reticulum, and also affected its post-translational maturation. Collectively, these findings first discovered that EcTLR5M mediated the flagellin-induced cytokine expression primarily by regulating the NF-κB signaling pathway, and EcUNC93B1 mediated EcTLR5M function through regulating its trafficking and post-translational maturation. This research expanded the understanding of fish innate immunity and provided a novel concept for the advancement of anti-vibrio immunity technology.


Subject(s)
Bass , Toll-Like Receptor 5 , Animals , Toll-Like Receptor 5/metabolism , NF-kappa B/metabolism , Flagellin , Signal Transduction , Cytokines , Immunity, Innate , Mitogen-Activated Protein Kinase Kinases/metabolism , Fish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...